177 research outputs found

    Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia

    Get PDF
    This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA), a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm) partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm) cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT), (N=48, n=12). Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf) until fracture. The other half was stored (a) (180 days, water, 37ºC) prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002), while aging did not: YZHT (19.80±6.44)a, YZHTa (17.95±7.21)a, ZLS (11.88±5.40)b, ZLSa (11.76±3.32)b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strengt

    The Effect of Resection Angle on Stress Distribution after Root-End Surgery

    Get PDF
    Introduction: This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application.  Methods and Materials: A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45º occlusal load of 200 N/cm2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). Results: MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Conclusion: Apicectomy at 90º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45° could be a good choice for clinicians.Keywords: Apicectomy; Cut Angle; Dental Stress Analysis; Endodontics; Finite Element Analysis; Resection Angl

    The importance of correct implants positioning and masticatory load direction on a fixed prosthesis

    Get PDF
    Through the biomechanical study of dental implants, it is possible to understand the dissipation effects of masticatory loads in different situations and prevent the longevity of osseointegration. Aims: To evaluate the microstrains generated around external hexagon implants, using axial and non-axial loads in a fixed four-element prosthesis with straight implants and implants inclined at 17°. Three implants were modeled using CAD software following the manufacturer?s measurements. Then, implants were duplicated and divided into two groups: one with straight implants and respective abutments, and the other with angled implants at 17° and respective abutments. Both groups were arranged inside a block simulating bone tissue. A simplified fixed prosthesis was installed on both groups and the geometries were exported to CAE software. Five loads of 300N were performed at axial and non-axial points on the fixed prosthesis. Stress on the implants and strain on the block were both analyzed. An in vitro experiment was performed following all structures made in FEA in order to validate the model. In each experimental block, 4 strain gauges were linearly placed between the implants and the same loads were repeated with a loading applicator device. The deformations computed by the gauges were correlated with the FEA results, showing that the group with inclined implants had more damaging biomechanical behavior and was significantly different from the group with straight implants (P<0.005). The mathematical model used is valid and inclined implants can induce unwanted bone remodeling

    Influence of substrate design for in vitro mechanical testing

    Get PDF
    The goal of this study was to evaluate the influence of dental substrate simulator material, and the presence of root and periodontal ligament on the stress distribution in an adhesively-cemented monolithic crown. Five (5) 3D models according to the substrate simulator material and shape were modeled with CAD software for conducting non-linear finite element analysis (FEA): Tooth with and without periodontal ligament - subgroup ?pl? (groups Tooth+pl and Tooth-pl), machined tooth in epoxy-resin with and without pulp chamber - subgroup ?pc? (ER+pc and ER-pc) and simplified epoxy-resin substrate without pulp chamber and roots (SiER). Next, adhesively-cemented monolithic crowns in zirconia reinforced lithium silicate were modeled over each substrate. The solids were then imported in STEP format to the analysis software and the contact between teeth and cylinder was considered perfectly bonded; whereas, the contacts involving the resin cement were considered as non-separated. The materials were considered isotropic, linearly elastic, and homogeneous. An axial load (600 N) was applied to the occlusal surface and results of maximum principal stress (MPa) on the restoration were required. FEA revealed that all evaluated subtracts showed the crown intaglio surface as the most stressed region. The average stress and stress peaks were similar for restorations cemented onto Tooth+pl, Tooth-pl and ER+pc substrates, but, 13% higher in comparison to ER-pc and SiER substrates. Simplified substrates can be used to evaluate posterior full crown behavior without periodontal ligaments and roots, since the rigidity of the specimen is taken into account

    3D Finite Element Analysis of Rotary Instruments in Root Canal Dentine with Different Elastic Moduli

    Get PDF
    The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidit

    Effect of framework type on survival probability of implant-supported temporary crowns : an in vitro study

    Get PDF
    This in vitro study evaluated the effect of framework type on the survival probability of temporary implant-supported crowns and on the implant platform structure after dynamic fatigue. Thirty (30) external hexagon implants (3.75 x 10 mm) were embedded in acrylic resin following the ISO-14801. Standardized temporary crowns (n=10, N=30) were manufactured in acrylic resin and divided according to the framework type: Total plastic, Plastic with CoCr base and Titanium. The crowns were installed onto the implants (20N.cm) and fatigued (100N, 2 Hz) to determine the crowns? survival probability for missions of 300.000 and 600.000 cycles. Fatigue data were submitted to the Kaplan-Meier test followed by Wilcoxon and Log Rank, all with ? = 5%. The implant platforms were parametrically inspected based on the scanning before and after the fatigue to evaluate the damage. The strain values were analyzed using One-way ANOVA and Tukey test, all with ? = 5%. ANOVA revealed that the Total plastic showed less implant damage (-0.07 ± -0.03 mm) than the Plastic with CoCr base (-0.08 ± -0.04 mm) and the Titanium (-0.10 ± -0.01 mm) frameworks. Therefore, the framework type to manufacture implant-supported temporary crowns influences the fatigue survival of the restoration and the implant platform damage. The Plastic with CoCr base and Titanium frameworks showed superior reliability than the Total plastic framework which could not survive 600,000 cycles. The Plastic with CoCr base and the Titanium framework are suitable for restorations over 3 months in use, without a difference in the implant platform damage

    Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis

    Get PDF
    This study evaluated the effect of interim restorative materials (acrylic resin (AR), resin composite (RC) or polyetheretherketone (PEEK) for dental computer-aided design/computer-aided manufacturing (CAD/CAM)) on the stress distribution of a posterior three-unit fixed partial denture

    Mechanical behavior of implant assisted removable partial denture for Kennedy class II

    Get PDF
    This study evaluated the mechanical response of a removable partial denture (RPD) in Kennedy Class II according to being associated or not with implants. Four RPDs were manufactured for a Kennedy Class II: CRPD - Conventional RPD, RPD+1M, RPD+2M and RPD+12M, respectively, signifying implant assisted RPDs with the implant installed in the first molar, second molar, and in the first and second molars. The finite element method was used to determine the most damaged support tooth under compressive load (300N, 10s) and strain gauge analysis was used to evaluate the microstrain. All groups were submitted to a retentive force analysis (0.5 mm/mm, 100kgf). Microstrain and retentive force data were submitted to One-way ANOVA and the Tukey test, all with ?=5%. High microstrain was observed in the second premolar adjacent to the edentulous space under compression load (p< 0.01). RPD+12M presented lower microstrain, however being similar to RPD+2M. RPD+1M presented a higher mean value of retentive force, but similar to RPD+12M. FEM showed RPD assisted by implants concentrates less stress in the periodontal ligament. The association of two implants was sufficient to decrease the stress generated in the implants. The most stressed region for the o-ring abutment was the threads, and the group with two implants showed the lowest stress concentration. In cases of Kennedy Class II, the association of RPD with implants in the molar region is a favorable option for patient rehabilitation, reducing the movement of the direct retainer adjacent to the edentulous space, increasing the removal force and decreasing the stress magnitude in the periodontal ligament

    Polymerization shrinkage stresses in different restorative techniques for non-carious cervical lesions

    Get PDF
    Objective This study evaluated the effect of different restorative techniques for non-carious cervical lesions (NCCL) on polymerization shrinkage stress of resins using three-dimensional (3D) finite element analysis (FEA). Methods 3D-models of a maxillary premolar with a NCCL restored with different filling techniques (bulk filling and incremental) were generated to be compared by nonlinear FEA. The bulk filling technique was used for groups B (NCCL restored with Filtek™ Bulk Fill) and C (Filtek™ Z350 XT). The incremental technique was subdivided according to mode of application: P (2 parallel increments of the Filtek™ Z350 XT), OI (2 oblique increments of the Filtek™ Z350 XT, with incisal first), OIV (2 oblique increments of the Filtek™ Z350 XT, with incisal first and increments with the same volume), OG (2 oblique increments of the Filtek™ Z350 XT, with gingival first) and OGV (2 oblique increments of the Filtek™ Z350 XT, with gingival first and increments with the same volume), resulting in 7 models. All materials were considered isotropic, elastic and linear. The results were expressed in maximum principal stress (MPS). Results The tension stress distribution was influenced by the restorative technique. The lowest stress concentration occurred in group B followed by OG, OGV, OI, OIV, P and C; the incisal interface was more affected than the gingival. Conclusion The restoration of NCCLs with bulk fill composite resulted in lower shrinkage stress in the gingival and incisal areas, followed by incremental techniques with the initial increment placed on the gingival wall. Clinical significance The non-carious cervical lesions (NCCLs) restored with bulk fill composite have a more favorable biomechanical behavior
    corecore